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Abstract
In this paper we investigate the magnetic properties of heavy fermions in
the antiferromagnetic and dense Kondo phases in the framework of the Kondo
necklace model. We use a mean-field renormalization group approach to obtain
a temperature versus Kondo coupling (T–J ) phase diagram for this model in
qualitative agreement with Doniach’s diagram, proposed on physical grounds.
We further analyse the magnetically disordered phase using a two-site approach.
We calculate the correlation functions and the magnetic susceptibility that
allow us to identify the crossover between the spin-liquid and the local moment
regimes, which occurs at a coherence temperature.

PACS numbers: 75.30.Mb, 05.50.+q, 75.20.Hr

1. Introduction

It is well known that the nature of the ground state of the dense Kondo compounds
results basically from the competition between the Ruderman–Kittel–Kasuya–Yosida(RKKY)
interaction and the Kondo effect. In a simple picture it is governed by a single parameter,
the ratio J/W , where J is the effective exchange between localized moments and conduction
electrons and W is the bandwidth of the latter. The value of this ratio is usually tunable
experimentally by pressure or composition ratio of the compounds. The RKKY interaction
is an indirect magnetic interaction between localized moments, mediated by the polarized
conduction electrons, with an energy scale of order JRKKY ∝ J 2

W
, which produces a long-

range ordered magnetic ground state. On the other hand, the Kondo effect favours the
formation of singlet states between localized moments and conduction electrons generating
a non-magnetic ground state and, in the single impurity case, has a characteristic energy
scale of the order kBTK = We−W/J . As a result of the interplay between these two
effects, some Kondo compounds are non-magnetic and are characterized by a heavy-fermion
behaviour (Fermi-liquid) at very low temperatures, while others order magnetically, generally
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antiferromagnetically. The study of this interplay is easily formulated using the Kondo
lattice model (KLM), which emphasizes the importance of spin fluctuations neglecting charge
fluctuations of the localized electrons and has been well characterized by the ‘Doniach phase
diagram’ [1]. In a simple picture, the ordering temperature TN initially increases with
increasing J, then passes through a maximum and vanishes at a critical coupling Jc. At this
quantum critical point (QCP), a second-order phase transition between an antiferromagnetic
ground state for small values of J and a dense Kondo state for strong couplings J occurs. This
behaviour of TN has been experimentally observed in many cerium compounds by varying
the pressure applied to the system [2–4] or the relative concentration in the compounds
[5, 6]. Many theoretical studies have been done in order to study the phase diagram [ 7–11],
the nature of this critical point [12] as well as the effect of the disorder introduced by pressure
and substitutions in the Kondo lattice systems [13–15].

In this paper we are interested in studying the T–J phase diagram of the Kondo
compounds. For this purpose, we use an analogue of the symmetric Kondo lattice with
the complete absence of charge fluctuations the Kondo necklace model (KNM). This model
was proposed by Doniach [1] and its ground state has been investigated by a variety of methods
[16–20]. In order to assess the critical behaviour of the Kondo necklace, we apply the mean-
field renormalization group (MFRG), first proposed by Indekeu et al [21], on the KNM.
This method combines mean field results for small clusters of spins and renormalization
group ideas. While mean-field theory identifies the order parameter of the cluster with the
order parameter of the entire system, the MFRG assumes that the cluster order parameter
rescales with cluster size [22]. Using this method we obtain the phase diagram of the Kondo
necklace as a function of temperature and Kondo coupling, which is qualitatively identical to
the Doniach diagram. Within a two-site approach [23], we calculate the finite temperature
magnetic susceptibility and investigate the behaviour of short-range magnetic correlations in
the magnetically disordered phase. As a result of this investigation, we increase the phase
diagram with a crossover line, which is associated with a coherence temperature that separates
Kondo spin-liquid and localized moments regimes.

This paper is organized as follows: in the next section we present the Kondo lattice and
Kondo necklace models and discuss their analogies. In section 3 we apply the MFRG approach
in the KNM and obtain the Doniach phase diagram, which we compare with experimental
results. In section 4 we apply a two-site method on the non-magnetic phase in order to study the
role of short-range correlations on the system. We also calculate the magnetic susceptibility
and then obtain a coherence temperature. In section 5 we summarize and discuss our results.

2. The model

The KLM is a theoretical model for heavy fermions that can be derived from the more
fundamental Anderson lattice model in the case of well-developed local spin moments [24].
It consists of two different types of electrons, the localized spins whose charge degrees of
freedom are suppressed and the conduction electrons that propagate as charge carriers. It is
described by

H = −t
∑
〈i,j〉
(c

†
i,σ cj,σ + h.c.) + J

∑
i

Si · c†i,ασαβci,β . (1)

The first term represents the conduction band (c†i,σ is the creation operator, t is the hopping
between nearest neighbours) and the second term is the interaction between conduction
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electrons and localized moments Si via the intra-site exchange J, where σ are the Pauli
matrices.

In order to study the interplay between Kondo screening and the RKKY interaction,
Doniach proposed a simplified model related to the one-dimensional Kondo lattice, called the
KNM. In this model, the conduction electrons are replaced by a spin chain with XY coupling
which eliminates charge fluctuations [1]:

HKN = W
∑
〈i,j〉

(
τ xi τ

x
j + τ yi τ

y

j

)
+ J

∑
i

Si · τi (2)

where τi and Si are independent sets of spin-1/2 Pauli operators. The first term mimics electron
propagation and in one dimension can be mapped by the Jordan–Wigner transformation onto
a band of spinless fermions. The second term is the magnetic interaction between conduction
electrons and localized spins Si via the coupling J, as in equation (1).

Although the KLM is mapped onto the KNM only in one dimension, it is clear that, even
in higher dimensions, HKN has the same magnetic tendencies of the Kondo lattice. Since the
essential features of the original model are kept, we expect that the main physical properties
of the Kondo lattice will be maintained in the model described by equation (2).

Since in the KNM approach to the Kondo lattice charge fluctuations are neglected, the
critical properties in this case are described just by spin excitations. However, it is important
to emphasize that the analysis of heavy fermion systems in terms of the KNM is appropriate
[27]. A recent and very complete study of a heavy fermion system just at the QCP [28] shows
that a description in terms of local moments seems to be more appropriate for this kind of
material. This may not be the case for all heavy fermions but it is also true that the universality
class of the quantum transition of heavy fermions has not been determined yet and may even
not be unique.

3. Mean-field renormalization group

The mean-field renormalization group was first proposed by Indekeu et al [21] for computing
critical properties of lattice spin systems. This method has been applied to many statistical
problems of physics, both classical and quantum systems, with [25] and without disorder
[21] and the resulting critical exponents deviate from those obtained from standard mean-field
theories (including Bethe lattice calculations) [22].

The main idea of the MFRG is the comparison of two clusters with N and N ′ sites,
respectively, subject to symmetry-breaking boundary conditions. The interactions within the
clusters are treated exactly, and the effect of the surrounding sites is replaced by a mean-field
which is supposed to scale in the same way as the order parameter.

For a generic spin system, one considers each boundary spin fixed and equal to b and b′

for the N andN ′ spin clusters respectively. After computing the order parameters ON and ON ′

for both the clusters, one imposes a scaling relation between them

ON ′(K ′, b′) = ξON(K, b) (3)

with K and K ′ being the coupling constants of the two rescaled systems. Assuming a similar
relation between the mean fields (b′ = ξb) and knowing that these fields have to be very small
near the second-order phase transition, one can expand equation (3) for small values of b and
b′ to obtain

∂O′
N(K

′, b′)
∂b′

∣∣∣∣
b′=0

= ∂ON(K, b)
∂b

∣∣∣∣
b=0

(4)



10832 T G Rappoport and M A Continentino

τ1

S1 S2

2ττ1

S1

a)                                        b)

Figure 1. Clusters considered in the calculations of the two-dimensional case. Each site contains
two spins, one spin S (open circle) connected by a solid line to one spin τ (filled circle). The
interaction between the sites is mediated by the spins τ , where the dashed bonds represent the
interactions with the boundary symmetry-breaking fields b′ and b.

which is independent of the scaling factor ξ . Equation (4) can be interpreted as a recursion
relation for the coupling constant K, from which the critical pointKc is extracted.

We can apply this method to the Kondo necklace in its simplest version, i.e., we consider
two cells containing one and two sites each, as sketched in figure 1 for a two-dimensional
hypercubic lattice.

As we deal with an incipient antiferromagnetic ordering and antiferromagnetism in the
Kondo necklace occurs in the XY plane [1], we consider a D-dimensional hypercubic lattice
and divide the system into two sub-lattices A and B. The order parameter is then the staggered
magnetization of the spins τ , taken along the x-direction (see equations (5) and (6)). The
x-component of the boundary spins in the smallest cluster is fixed to be −b′ since all the first
neighbours of τ1 are in the same sub-lattice. In the two-site cluster, τ1 and τ2 are in different
sub-lattices, so the x-component of their neighbouring boundary spins has different signs and
is fixed at −b and b, respectively.

Let us first consider the Hamiltonian for a one-site cluster taken on a sub-lattice A,

H1 = J ′S1 · τ1 − zb′W ′τ x1 (5)

whereJ ′ is the scaled coupling interaction and the spin τ1 interacts with its z nearest neighbours
through the term zb′W ′τ x1 .

Similarly, the Hamiltonian for the two-site system (one in each sub-lattice) is given by

H12 = J

2∑
i=1

Si · τi +W
(
τ x1 τ

x
2

) − (z − 1)bW
(
τ x1 − τ x2

)
. (6)

In this case the spin τ1 interacts directly with τ2 through a termW
(
τ x1 τ

x
2

)
and both τ1 and

τ2 interact with their (z − 1) nearest neighbours through −(z − 1)bWτx1 and (z − 1)bWτx2
respectively.

This method can be used to study quantum systems (T = 0), for which there are few
available renormalization group techniques. For this purpose, we compute the ground states
|0〉1 and |0〉12 of the two systems and their corresponding staggered magnetizations along the
x-direction. In the vicinity of the phase transition, b and b′ can be assumed to be small and

Ms
1 = 〈0|τ x1 |0〉 = − z

2j ′ b
′

Ms
12 = 〈0| (τ x1 − τ x2

) |0〉
2

= − 2 (z− 1) (
√

16 j 2 + 1 + 1)2

(1 + 16 j 2 +
√

16 j 2 + 1) (−1 +
√

16 j 2 + 1)
b

where j = J
W

and j ′ = J ′
W ′ .
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The main assumption of the MFRG is the imposition of the same scaling relations between
Ms

1 andMs
12, b and b′. By doing this, we arrive at the renormalization group recursion relation

for j and j ′. The associated fixed point equation is

z

jc
=

4(z− 1)
(√

16 j 2
c + 1 + 1

)2

(
1 + 16 j 2

c +
√

16 j 2
c + 1

) (
−1 +

√
16 j 2

c + 1
) . (7)

By solving equation (7) we obtain the antiferromagnetic QCP in any space of dimension
D. For z = 2, which corresponds to a one-dimensional system, we obtained jc = 0.64. The
critical ratios jc for other coordination numbers are z = 4 → jc = 1.66, z = 6 → jc = 2.67.
These values can be compared with the recent results [20, 34] and the relative errors are
12.67% for the two-dimensional and 1.5% for three-dimensional showing that the results are
most reliable for higher dimensions.

It is worth mentioning that the diagonalization of H12 is not a simple task. However, as
we are interested in the small values of the mean field, a perturbative expansion can be worked
out in order to obtain the eigenvalues and eigenvectors in powers of b [26]. We follow the
same prescription in order to calculate the staggered magnetizations for T 
= 0.

As we have more than one variable, we cannot determine a complete renormalization
flow in the [ j, T ] plane. However, for a fixed j we can calculate TN or vice versa. In order to
obtain the critical values, we consider the solutions of the fixed point equation associated with
equation (4), i.e.,

∂Ms
1(TN , j)

∂b′

∣∣∣∣
b′=0

= ∂Ms
12(TN, j)

∂b

∣∣∣∣
b=0

(8)

where for each j < jc we obtain a TN(j) and the set of all critical points yields the temperature-
dependent phase diagram of the Kondo necklace. The critical line for a three-dimensional
system (z = 6), is depicted in figure 2. Close to the zero temperature fixed point it behaves as

|δ| = |j − jc| ∝ e−α(z,jc )βN βN = 1

kBTN
. (9)

This dependence is characteristic of this approach and appears for any dimension.
Endstra et al [29] calculated the J couplings of many cerium and uranium compounds

based fundamentally on the atomic radii and interatomic distances of these systems. More
recently, Cornelius and Schilling, based on the variation of the lattice parameters generated
by pressure and substitution of Si by Ge (negative pressure) in CeM2Si2−xGex compounds
(where M = Rh, Ru, Pd) [30–32], found a relation between the Neèl temperature TN and
the coupling J for CeRu2Si2, CeRh2Si2 and CePd2Si2 [33]. Their results fall in Doniach-like
curves, which when normalized by the maximum of TN (Tmax) and its equivalent JTmax collapse
onto a single universal curve.

We observe that in the experimental results, the Neèl temperature becomes zero in the weak
coupling regime at a value of J greater than zero, differently from the theoretical predictions
for the Kondo lattice. By shifting the experimental results along the J-axis in order to obtain
TN = 0 at J = 0, and using the same normalization used in [33], we obtain the results of figure 3
(z = 6 (three-dimensional)), where one can see that the behaviour of the theoretical curve is
in good agreement with the experimental values. We can conclude that these Kondo systems
behave qualitatively as proposed by Doniach although in practice the long-range magnetic
order vanishes before the theoretical J = 0 value is attained.

As we are dealing with a mean-field-like approach using small clusters we do not obtain
a precise value for the QCP for a one-dimension case (J = 0) such as in previous studies
[17–20]. Nevertheless, this method has the advantage of being very simple to implement at
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Figure 2. Phase diagram of the KNM within the mean-field renormalization group approach
(with z = 6) compared with the experimental results for cerium compounds extracted from [33].
The results are normalized by the maximum value of the Neèl temperature TN and its associated
coupling J.

finite temperature and produce reliable values of the QCP for higher dimensions, as discussed
before.

The main feature of the MFRG method in its simplest approach (one- and two-site cells) is
that it yields the [T, j] phase diagram for heavy fermions as proposed by Doniach on physical
grounds [1]. This is so because this method captures the essential physics of the Kondo lattice
problem, namely, the competition between the RKKY and Kondo interactions. However, it
is important to note that the present method can be applied to larger clusters, which provides
better information concerning the lattice topology of the system [22] in order to obtain more
accurate values for the QCP for lower dimensions.

4. Short-range correlations

In the magnetically disordered phase, where the mean fields b and b′ are identically zero, we
can still calculate some properties of the system by means of a two-site approximation. This
method consists in solving exactly a Hamiltonian of two sites, i.e., equation (6) with b = 0.
As this finite size system does not present long-range (magnetic) order, we expect that this
approach will unravel some aspects of the non-magnetic phase. For consistency of the analysis
we shift j by the critical value jc obtained previously such that the correlations in the dimers
vanish at the QCP and not at j = 0. The analysis below is consequently valid not too close to
the QCP in the region where the correlation length has not grown much beyond two atomic
distances.

We can investigate the behaviour of short-range magnetic correlations as well as the
intra-site correlations between localized moments and conduction electrons, which are related
to the Kondo effect.
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Figure 3. Competition between two kinds of correlation: the intra-site 〈S · τ 〉 (dashed line) and
the inter-site

〈
τ x1 τ

x
2

〉
(solid line) for |δ| = 0.3.

The localized–delocalized spin correlation function 〈S · τ 〉 characterizes the condensation
of singlet states. At T = 0, this function decreases for increasing values of j, saturating at the
value −3, which is consistent with the strong coupling limit [19] where the system condenses
into independent singlets at each site. As the temperature rises, this correlation rapidly falls to
zero and we observe that, since coherence in the KNM is a collective phenomenon, even low-
temperature excitations can destroy the Kondo spin-liquid regime. The inter-site correlation
function

〈
τ x1 τ

x
2

〉
represents the short-range magnetic correlations. This function has a minimum

at a low temperature and then gradually vanishes as T increases. Differently from 〈S ·τ 〉, it has
a smooth behaviour for large T and its asymptotic behaviour is independent of |δ| = |j − jc|.

The competition between these two kinds of correlations produces a change in the
behaviour of the system, as illustrated in figure 3. For low temperatures, the correlation
〈S · τ 〉 is stronger and the system is in a condensate of singlets, typical of the Kondo spin-
liquid regime [20]. Near the minimum of the magnetic correlation function

〈
τ x1 τ

x
2

〉
there

is a crossover:
〈
τ x1 τ

x
2

〉
begins to dominate and destroys these singlet states giving rise to a

paramagnetic regime with localized moments. The inflection point in the magnetic correlation
function, where it crosses 〈S · τ 〉, defines the crossover or coherence temperature Tcoh which
separates the two different regimes in the non-magnetic region of the phase diagram.

The magnetic susceptibility (figure 4), calculated according to equation (10), illustrates
the difference between these two regimes.

χ0 = Z−1N−1β
∑
m

e−βEm (
Mx

total

)2

(10)
Z =

∑
m

e−βEm β = 1

kBT
.

At low temperatures (T � Tcoh), as we are dealing with the symmetric case of the Kondo
lattice, the system is an insulator and there is a singlet–triplet gap. At a higher temperature
there is a maximum in the susceptibility where the gap closes and finally, at high T (T � Tcoh),
we can see an asymptotic Curie–Weiss regime, typical of localized moments.

The coherence temperature is calculated by finding the zero of
∂2〈τx1 τx2 〉
∂T 2 . The Doniach

diagram discussed in the previous section can be generalized in order to include two other
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Figure 4. Magnetic susceptibility versus temperature for |δ| = 0.3 obtained within the two-site
approach.
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Figure 5. Complete phase diagram of the KNM (for z = 6). The curve TN(J) is shown here as a
full line, whereas the dashed line represents Tcoh(J ).

regimes in the magnetically disordered region of the phase diagram, separated by the coherence
line. figure 5 illustrates the extended diagram obtained by using these two methods.

5. Conclusions

We have successfully applied the MFRG on the KNM. Using the simplest choice of
clusters, we obtained the quantum critical point for the two- and three-dimentional cases
that are in good agreement with the previous calculations. We obtained for the first time
a theoretical calculation of the Doniach diagram for the KNM and compared it with the
experimental results for some cerium compounds obtaining qualitatively good agreement.
In the magnetic disordered phase we calculated, using a two-site method, the short-range
magnetic correlation function, the localized–delocalized spin correlation function as well as
the magnetic susceptibility as a function of temperature and characterized two well-defined
regimes: at low temperatures, a condensate of singlets with a singlet–triplet gap and at high
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temperatures, a Curie–Weiss regime. The crossover line close to the QCP has been analytically
calculated and presents a power-law behaviour.
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[28] Schröder A et al 2000 Nature 407 351
[29] Endstra T, Nieuwenhuys G J and Mydosh J A 1993 Phys. Rev. B 48 9595
[30] Das I and Sampathkumaran V 1991 Phys. Rev. B 44 9711
[31] Dakin S, Rapson G and Rainford B D 1992 J. Magn. Magn. Mater. 108 117
[32] Godart C, Gupta L C, Tomy C V, Thompson J D and Vijayaraghavan R 1989 Europhys. Lett. 8 375
[33] Cornelius A L and Schilling J S 1994 Phys. Rev. B 49 3955
[34] Assad F F 1999 Phys. Rev. Lett. 83 796


